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Abstract

Satallax is an automated theorem prover for higher-order logic. It works by
reducing theorem proving to a sequence of SAT problems, which are checked
by Minisat for satisfiability. If Satallax is successful in finding a proof, the
result is an unsatisfiable set of clauses and a table assigning higher-order
formulas to the propositional literals.

In this thesis we will present an algorithm that takes the output of Satallax
and generates a tableau refutation as a proof script for the proof management
system Coq to check. The algorithm requires just an UNSAT-core from the
set of clauses and uses them to generate a finite tableau calculus in which
we will search for a refutation. A formal proof of a refutation’s existence in
such a calculus will ensure the success of our algorithm.
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1 Introduction

In this thesis we present an extension to the automated higher-order theorem
prover Satallax [2]. Satallax works by reducing higher-order proving to a
sequence of propositional satisfiability problems [10]. The backbone of the
procedure is a SAT solver that solves these SAT problems efficiently. If
Satallax succeeds we will get as an answer just yes or no, but no proof.
There are several reasons why someone might distrust a such result:

Is the method Satallax uses correct? Is it correctly implemented or are
there bugs in the implementation? Even if it is correct, the SAT solver could
be incorrect. The implementation is intended to allow to change the solver,
which might be too complex to ensure its correctness. Furthermore, many
solvers will not produce a proof, if the problem is unsatisfiable. Even though
some do, does this justify the result for the higher-order problem?

Such trust issues have existed since computers are used to solve mathe-
matical problems. De Bruijn already described this issue when he introduced
Automath [13]:

There is a case for automatic proof writing in Automath if
we have to produce a tedious long proof along lines that can be
precisely described beforehand. Let us take an example. Assume
that P is a proposition on magic squares, and that we want to
prove a theorem saying that there is no 8x8 magic square that
has property P. We can write a computer program for this and
run it on a computer. The computer says that none exist. Now
quite apart from the question whether the computer is right, we
have to admit that a formal mathematical proof has not been pro-
duced. Even if we had a complete mathematical theory about the
machine, the machine language, the programming language, our
proof would depend on intuitive feelings that the program gives
us what we want, and it would definitely depend on a particular
piece of hardware. For those who are willing to take Automath,
at least temporarily, as their only final conscience of mathemati-
cal rigour, there is a way out.
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We can rewrite the magic square program in such a way that
the search is stepwise accompanied by the production of Au-
tomath lines that give account of a detailed mathematical rea-
soning, ending with the conclusion that there is no 8x8 magic
square with property P. This way we get a complete proof that
can be checked by any mathematician. If we leave the checking
to a computer, again we get into the question of whether the pro-
cessor and the computer do what we expect them to do, but that
is an entirely different matter. [13, Section 11.2]

We want to follow his suggestion for this thesis, but instead of Automath
we will use the modern system Coq [1]. Coq is widely trusted and a result
given as a proof script can be verified independently from Satallax. However,
we want to avoid rewriting Satallax such that it is “stepwise accompanied
by the production of [Coq] lines”, as this would include rewriting the SAT
solver. Furthermore, Satallax often produces SAT problems with thousands
of clauses, while only a few are necessary. Of course, there is no way for
Satallax to know them in advance.

Therefore we produce our proof in a post-processing phase after the main
search of Satallax has finished. As the search algorithm is based on a cut-free
tableau calculus for Church’s simple type theory with choice [6], the natu-
ral choice for our proof is to construct a tableau refutation. Additionally,
we will use the result of Satallax to restrict the tableau calculus for each
individual refutation. We first prove that the restricted calculus does con-
tain a refutation by giving a constructive proof and then we describe our
implementation.

1.1 Structure of the Thesis

This thesis is split into five parts:

1. Preliminaries (Chapter 2): The first section of Chapter 2 gives basic
definitions for higher-order logic and tableau calculus as well as intro-
duces the underlying programs - Satallax, MiniSat and Coq. Then
we will formulate the conjecture the thesis is based on. In the last sec-
tion we give two examples that demonstrate the conjecture and disclose
the first issues we have to solve.

2. Theoretical part (Chapter 3): In Chapter 3 we will formalize and prove
our conjecture. We begin with descriptions of the necessary definitions
and then give the prove in two parts - a lemma and the actual theorem.
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3. Practical part (Chapter 4): Chapter 4 will describe the implementa-
tion. It is itself again split into three parts. In the first part we give
the algorithm that constructs a refutation “skeleton” and some details
about the implementation. In the second part we describe what the
skeleton is missing and how to fill those holes efficiently. In the last
part we show how the final refutation is simulated in Coq.

4. Results part (Chapter 5): Chapter 5 shows some results of problems
from the TPTP library.

5. Final part (Chapters 6): In the last chapter we will give an outlook
how the implementation can be further improved and what cases the
implementation does not cover.
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2 Fundamentals

In this chapter we give the notations used in this thesis and some information
about the underlying software we use. The notations are mostly consistent
with [6] and [10].

2.1 Preliminaries

We first present the syntax of Church’s simple type theory with a choice
operator. A more thorough description can be found in [6]. Types, σ, τ, µ,
are inductively defined by the base types o, ι and σ → τ - truth values,
individuals and functions from σ to τ respectively. Function types σ → τ are
abbreviated by στ with right-associativity for parenthesis, e.g., στµ is equal
to σ(τµ). There is a countably infinite set of variables for each type σ. Each
term is typed and a term of type o is called a formula.

We give the logical constants and their types in Figure 2.1. ⊥, →, ∀σ, =σ,
εσ are called standard constants and a formula is standard if it only contains
standard constants. Because we are in a classical, extensional setting, there
is a clear process by which a formula s can be transformed into a standard
formula s′ such that s and s′ are equivalent. We refer to this process as
standardisation. We will return to this in Section 4.3.1. We use common
notations for those constants: Infix notation for →, =σ, ∨, ∧, ↔ and binder
notation for ∀σ, ∃σ and εσ, e.g., s = t and ∀x.s instead of =σ s t and ∀σλx.s.
We will also use ¬ as a notation for → ⊥ in standard formulae. The set Vt
of free variables of t has the usual definition.

The normalization of a term s is denoted by [s] and s is normal if [s] = s.
For the theoretical part of the thesis we will assume [.] as βη-normalization.
The implementation, however, uses different kinds of “normalization” which
will be explained in Section 4.3.1.
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logical constant type description

⊥ o false
→ ooo implication
∀σ (σo)o forall quantification
=σ σσo equality
εσ (σo)σ choice operator
> o true
¬ oo negation
∨ ooo disjunction
∧ ooo conjunction
↔ ooo equivalence
6=σ σσo inequality
∃σ (σo)o exist quantification

Figure 2.1: List of logical constants. The first five are standard constants.
The remaining constants can be expressed in terms of the first
five.

2.1.1 Tableau Calculus

A branch is a finite set of normal higher-order formulae. A standard branch
contains only standard formulae. A branch A is closed if ⊥ ∈ A, {s,¬s} ⊆ A
or s 6= s ∈ A for some term s. Otherwise the branch is open. A variable x is
free on a branch A, if there is a formula t ∈ A such that x ∈ Vt. Otherwise,
x is fresh on A.

A step is an n+2-tuple 〈A,P , A1, ..., An〉 of sets of formulas, where P ⊆ A.
The branch A is the head of the step, the set P contains the principal formulae
and each Ai is an alternative, which has the side formulae as its members.
In the definition of a step in [6] the alternatives are the branches A ∪ Ai. A
rule is a set of steps and is usually indicated by a schema such as

TBQ
s =o t

s , t | ¬s , ¬t

This rule describes the set of steps 〈A, {s =o t}, {s, t}, {¬s,¬t}〉, where s =o

t ∈ A. A step can be applied to a branch B if P ⊆ B and each Ai 6⊆ B,
i.e., the principal formulae are on the branch and the rule’s application does
not leave the branch unchanged. In this case we also say that the step is
enabled. A branch B satisfies a step, if P ∪ B is closed or Ai ⊆ B for some
i ∈ {1, ..., n}.
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The tableau calculus T (see Figure 2.2) Satallax uses applies on standard
branches.

The set of T -refutable branches is defined inductively as follow:
• If A is closed, then A is T -refutable.

• If 〈A,P , A1, ..., An〉 is a step and A ∪ Ai is T -refutable
for all i ∈ {1, ...n}, then A is T -refutable.

For our purpose we extend this tableau to the one given in Figure 2.3
by adding rules for the remaining logical constants, transitivity and cut.
Further we lift the restrictions from T∀ and Tε. As T is a subset of T + any
T -refutable branch is also T +-refutable. Any T +-refutable standard branch
is T -refutable by completeness of T . This full tableau calculus T + will be
used in this thesis for examples and in the implementation. However, this
does not necessarily fix the content of T +. While T is restricted to aid
Satallax by reducing the search space it is safe to include further sound rules
in T + if it appears useful for the implementation. For convenience if we later
mention ∃ this will include ¬∀. The same holds for ∀ and ¬∃.

2.1.2 Satallax

Satallax progressively generates higher-order formulas and cor-
responding propositional clauses. These formulas and propo-
sitional clauses correspond to a complete tableau calculus for
higher-order logic with a choice operator. Satallax uses the SAT
solver MiniSat as an engine to test the current set of proposi-
tional clauses for unsatisfiability. If the clauses are unsatisfiable,
then the original set of higher-order formulas is unsatisfiable. [2]

An abstract description of the search procedure and implementation of
Satallax can be found in [10].

As input Satallax is given a TPTP file in THF format [23] with a list
of definitions, axioms and an optional conjecture. If there is no conjecture
Satallax assumes ⊥ as the conjecture.

Let Atom be a countably infinite set of propositional atoms. For each atom
a, let ā denote a distinct negated atom. A literal is an atom or a negated
atom. Let Lit be the set of all literals. Let ¯̄a denote a.

The function b.c maps formulae to Lit such that b¬sc = bsc, bsc = b[s]c
and if [s] = [t], then s and t are equivalent. That means a literal is a higher-
order normal formula that has been abstracted from all logical connectives,
where we only consider whether there is a leading negation. A propositional
clause is a finite set of literals.
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T⊥
⊥

T¬
s, ¬s

T 6=
s 6=ι s T→

s→ t

¬s | t
T¬→

¬(s→ t)

s,¬t

T∀
∀σs
[st]

t ∈ Uσ T¬∀
¬∀σs
¬[sx]

x ∈ Vσ fresh

TMAT

δs1 . . . sn , ¬δt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

n ≥ 1 TDEC
δs1 . . . sn 6=ι δt1 . . . tn

s1 6= t1 | . . . | sn 6= tn
n ≥ 1

TCON
s =ι t , u 6=ι v

s 6= u , t 6= u | s 6= v , t 6= v

TBE
s 6=o t

s , ¬t | ¬s , t
TBQ

s =o t

s , t | ¬s , ¬t

TFE
s 6=στ t

¬[∀x.sx = tx]
x 6∈ Vs ∪ Vt TFQ

s =στ t

[∀x.sx = tx]
x 6∈ Vs ∪ Vt

Tε
[∀x.¬(sx)] | [s(εs)]

εs accessible, x /∈ Vs

Figure 2.2: Satallax’ Tableau calculus T . δ ranges over variables and choice
operators. The restrictions for T∀ and Tε are described in [6]

There are two special kinds of clauses: Assumption and rule clauses. As-
sumption clauses are unit clauses where the single literal is mapped from
an axiom or the negation of a conjecture. Rule clauses are derived from a
tableau rule (Figure 2.2) and consequently encode a subset of this rule. In
a way we can regard rule clauses as the “conjunctive normal form” of the
tableau steps.

For example, a clause could be derived from the rule T→ and encode the
steps 〈A, {s → t}, {¬s}, {t}〉 for some formulae s and t and all branches A
with s→ t ∈ A. These steps describe the fact that if s→ t holds it implies
that either ¬s or t holds:

bs→ tc → bsc ∨ btc ≡ bs→ tc ∨ bsc ∨ btc

The resulting rule clause is written as bs→ tc t bsc t btc.
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T⊥
⊥

T¬
s, ¬s

T6=
s 6=ι s T¬¬

¬¬s
s

T→
s→ t

¬s | t

T¬→
¬(s→ t)

s,¬t
T∨

s ∨ t
s | t

T¬∨
¬(s ∨ t)
¬s,¬t

T∧
s ∧ t
s, t

T¬∧
¬(s ∧ t)
¬s | ¬t

T∀
∀σs
[st]

T¬∀
¬∀σs
¬[sx]

x ∈ Vσ fresh T∃
∃σs
[sx]

x ∈ Vσ fresh T¬∃
¬∃σs
¬[st]

TMAT

δs1 . . . sn , ¬δt1 . . . tn
s1 6= t1 | . . . | sn 6= tn

n ≥ 1 TDEC
δs1 . . . sn 6=ι δt1 . . . tn

s1 6= t1 | . . . | sn 6= tn
n ≥ 1

TCON
s =ι t , u 6=ι v

s 6= u , t 6= u | s 6= v , t 6= v
TTrans.

s =ι t , t =ι u

s = u

TBE
s 6=o t

s , ¬t | ¬s , t
TBQ

s =o t

s , t | ¬s , ¬t

T↔
s↔ t

s , t | ¬s , ¬t
T¬↔

¬(s↔ t)

s , ¬t | ¬s , t

TFE
s 6=στ t

¬[∀x.sx = tx]
x 6∈ Vs ∪ Vt TFQ

s =στ t

[∀x.sx = tx]
x 6∈ Vs ∪ Vt

Tε
[∀x.¬(sx)] | [s(εs)]

TCut
s | ¬s

Figure 2.3: Full Tableau calculus T +
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From some rules we derive more than one clause and only the resulting
clauses together encode the steps. For example, if we want to encode the
steps 〈A, {s =o t}, {s, t}, {¬s,¬t}〉 ⊆ TBQ as propositional clauses, it will

result in the clauses bs = tctbsctbtc and bs = tctbsctbtc. Again if s =o t
is true then it implies that either both s and t are true or both are false:

bs = tc → (bsc ∧ btc) ∨ (bsc ∧ btc)
≡ bs = tc ∨ (bsc ∧ btc) ∨ (bsc ∧ btc)
≡ (bs = tc ∨ bsc ∨ bsc) ∧ (bs = tc ∨ bsc ∨ btc) ∧

(bs = tc ∨ btc ∨ bsc) ∧ (bs = tc ∨ btc ∨ btc)
≡ (bs = tc ∨ bsc ∨ btc) ∧ (bs = tc ∨ btc ∨ bsc)

The ¬∀-rule requires some additional consideration. Let us assume there
are the steps 〈A, {¬∀σs}, {¬[sx]}〉 ⊆ T¬∀, where besides ¬∀σs ∈ A, x has to
be fresh in A. This leads us to the clause b∀σsc t bsxc and we say step and
clause respectively select x as the witness. To encode the property of the
variable’s freshness in the clause the restriction is strengthened. The witness
x is globally fresh, i.e., x is not free on any formula that exists at that point
in the search.

A propositional assignment Φ is a mapping from literals to {0, 1}, where
Φ(l) = 1 − Φ(l) for every literal l. A propositional clause C is satisfied if
there is an assignment Φ such that Φ(l) = 1 for some l ∈ C. A set of clauses
C is propositionally satisfiable if there is a propositional assignment Φ that
satisfies every clause C ∈ C. Otherwise, C is propositionally unsatisfiable.

2.1.3 SAT Solvers

Whether a set of clauses C is propositionally satisfiable or unsatisfiable is a
SAT problem. Satallax incrementally calls MiniSat [14] to check C for satis-
fiability. If the set is in the end propositionally unsatisfiable, we will call the
utility PicoMus from the SAT solver PicoSat [9] to retrieve the minimal
unsatisfiable core [5], i.e., a minimal subset of C that is still propositionally
unsatisfiable.

MiniSat is based on the DPLL algorithm [12] and applies conflict driven
learning [19]. We quote MiniSat’s basic procedure in Algorithm 1.
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Algorithm 1: DPLL with conflict driven learning [14]

loop
propagate() // propagate unit clauses

if not conflict then
if all variable assigned then

return Satisfiable
else

decide() // pick a new variable and assign it

else
analyze() // analyze conflict and add a conflict

clause

if top-level conflict found then
return Unsatisfiable

else
backtrack() // undo assignments

// until conflict clause is unit

2.1.4 Coq

Coq is a formal proof management system. It provides a for-
mal language to write mathematical definitions, executable al-
gorithms and theorems together with an environment for semi-
interactive development of machine-checked proofs. [1]

A proof term is a term in the Calculus of Inductive Constructions. After we
give a claim or theorem as a goal, Coq starts an interactive environment in
which we can use tactics to construct a proof for the goal. Applying a tactic
can have several consequences:

• It can introduce an hypothesis into the local context. Axioms and def-
initions given before the environment was opened are present in the
global context.

• New subgoals can replace the previous goal. Tactics use backward rea-
soning, i.e., by proving the new subgoals we can deduce our old subgoal.

• The current subgoal can be closed. If all subgoals are closed the proof
is complete.

For more detailed information a reference manual [7] and literature [8] on
Coq is available.
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2.2 Conjecture

The goal of this thesis is to verify the results of Satallax by giving a tableau
refutation as a Coq proof script. If Satallax succeeds, we already know that
a tableau refutation exists. Hence, to get a refutation we could build an
automated higher-order theorem prover that actually searches for the refuta-
tion on its own, while simultaneously producing a proof script. However, this
would not take advantage of the work Satallax has done. The final state of
Satallax will already contain useful information like the set of clauses Min-
iSat identifies as propositionally unsatisfiable, the universes of instantiation
terms and the existential witnesses. We want to make use of this when we
construct the refutation.

Therefore we consider that MiniSat actually proves the existence of a
refutation, when it confirms the propositional unsatisfiability of the final
state of Satallax. If the initial branch A is standard we can show with
Proposition 1 in [10] that A is unsatisfiable and thus A is refutable in T
by the completeness of T (Figure 2.2). Hence we could say that MiniSat
indirectly refutes the branch.

Of course, MiniSat does not know T . However, the literals and clauses it
has received from Satallax encode higher-order formulae and tableau refuta-
tion steps from T . As the set of clauses is finite, MiniSat has only a finite
subset of T available for its refutation, but is still able to show its existence.

Following these thoughts we formulate our conjecture: If Satallax reaches
from an initial branch A a propositionally unsatisfiable state, we can refute
A in the finite subset of T Satallax has used to create the clause set C.

Furthermore as the subset is finite, a search for a refutation in this set is
guaranteed to terminate.

2.3 Examples

We consider some simple examples to show the effect of our conjecture on a
search for a refutation.
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2.3.1 The Necessity of Cut

Let us consider the initial branch with the assumptions δs ∨ δt, ¬δu ∨ ¬δt,
s = t and t = u, where s, t and u are of type ι and δ is of type ιo.

Using T∨ we get the clauses bδs ∨ δtc t bδsc t bδtc
and b¬δu ∨ ¬δtc t bδuc t bδtc.

Using TMAT we get the clauses bδsc t bδtc t bs = tc, bδtc t bδuc t bt = uc
and bδsc t bδuc t bs = uc .

Using TCON we get the clause bs = tc t bs = uc t bs = sc t bt = uc
among three others.

MiniSat now tells us that the set of clauses is unsatisfiable and we see
that we can build a refutation using these steps (see Figure 2.4.a).

But even without the confrontation clauses and the third mating clause
the set is still unsatisfiable. Following our conjecture, we should be able to
write down a refutation (see Figure 2.4.b).

a) b)
δs ∨ δt

¬δu ∨ (¬δt)
s = t
t = u
T∨

δs δt
T∨

¬δu ¬δt
TMAT

s 6= u
TCON

s 6= s t 6= s
s 6= u t 6= u
  

TMAT

s 6= t
 

T∨
¬δu ¬δt
TMAT

t 6= u
 

 

δs ∨ δt
¬δu ∨ (¬δt)

s = t
t = u
T∨

δs δt
T∨

¬δu ¬δt

?
TMAT

s 6= t
 

T∨
¬δu ¬δt
TMAT

t 6= u
 

 

Figure 2.4

For the branch B? = {δs ∨ δt, ¬δu ∨ ¬δt, s = t, t = u, δs, ¬δu} none of
the encoded steps can be applied anymore, but the branch is still open.

To complete the refutation, one solution is to weaken the condition of our
assumption:

We will allow analytic cut to be applied on known terms , e.g., in this case
δt (see Figure 2.5.a). We can even reduce the size of the refutation overall
by applying the cut early (see Figure 2.5.b).
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Figure 2.5

2.3.2 The Issue with Freshness

Let us now consider the initial branch with the assumptions ∀xy.¬r x y and
(∀x.r x x) ∨ ∃x.r x x, where x and y are of type ι and r is of type ιιo.

Using T∨ we get the clause b(∀x.r x x) ∨ ∃x.r x xc t b∀x.r x xc t b∃x.r x xc.
Using T∃ we get the clause b∃x.r x xc t br a ac, where a is selected as

the witness of type ι.
Using T∀ we get the clauses b∀x.r x xc t br a ac, b∀xy.¬r x yc t b∀y.¬r a yc

and b∀y.¬r a yc t br a ac.
The resulting set is propositionally unsatisfiable. We can again refute A

using these steps (see Figure 2.6.a) However, if we try to apply the steps in
a different order, we can get stuck (see Figure 2.6.b).

As a is not fresh on A the restriction of T∃ prevents us from applying the
step encoded by b∃x.r x xc t br a ac to get r a a. However, if we try to
solve this by restricting instantiation on variables which are not fresh, we get
stuck again (see Figure 2.7.a).

While building the refutation we do not know in general how the refutation
of a given branch will be finished. Therefore we risk getting stuck in one of
these cases either way and then would have to start backtracking. Again this
can be resolved by allowing cut, this time on ∃x.r x x (see Figure 2.7.b).

On one side we can now introduce a applying the ∃-step. On the other
side we now have ¬∃x.r x x on the branch. As ∃x.r x x is the only ∃-term
with a as its witness the branch will be closed before we ever have to consider
this ∃-step. After finishing the refutation, we can then check whether the
¬∃x.r x x was necessary and remove the cut if it was unnecessary.
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3 Theory

3.1 Refutability in F

When Satallax successfully finishes its search, it has found an unsatisfiable set
of clauses C. We define F as the set of all normal formulae present as literals
in C, i.e., F := {s | s normal and ∃C ∈ C.bsc ∈ C}. By our conjecture this
set of known formulae is sufficient to construct a refutation. In the following
chapter we will make this conjecture precise and give a constructive proof
for it.

For simplicity we use standard formulae and the restricted tableau calculus
T (Figure 2.2). In the implementation Satallax uses rewriting in a prepro-
cessing phase for standardisation. Furthermore, we assume that for every
clause C ∈ C, which partly encodes a step, all clauses encoding that step are
in C. Otherwise we add them.

3.2 Definitions

As a SAT solver handles every formula as a sign free atom, we will consider
for every formula its negation, too. To prevent creating infinitely many
negations of negations we normalize every formula s using the equivalence
¬¬s ≡ s. This way there will be at most one negation in front of every
formula.

Definition 3.2.1 (negation). Let s be a formula,

then s̄ =

{
t, if there is a t such that s = ¬t
¬s, otherwise

A finite set of formulae F is closed under negation, if for every s ∈ F, s̄ ∈ F .

To show that a set of clauses is propositionally unsatisfiable we need to
show that every propositional assignment Φ does not satisfy all clauses. In
our set of higher-order formulae we will simulate Φ as a full expansion of the
initial assumptions, i.e., we add as many formulae from our known set F to
the branch as possible without closing it.
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This way we will have a branch that contains every formula or its negation.

For such a full expansionB there is an assignment Φ(bsc) :=

{
1 if s ∈ B
0 otherwise

.

Definition 3.2.2 (full expansion). Let A be an open branch and F a finite
set of normal formulae, where A ⊆ F . We call B a full expansion
if A ⊆ B ⊆ F , B is open and ∀s ∈ F, s ∈ B or B ∪ {s} is closed.

Making use of the finiteness of F we restrict our tableau calculus T , i.e.,
we only consider steps in T where all formulae are in the negative closure
of F . This way the restricted calculus T̃ will be finite as well. We will
further assume that we know for every type σ the universe of instantiations
Uσ. Knowing U makes testing whether a certain formula is the result of a
∀-instantiation decidable. This information can be extracted from Satallax.
As discussed in the previous chapter we also require analytic cuts and thus
add for every formula and its negation in F the corresponding cut step.

Definition 3.2.3 (tableau calculus T̃ ). Let F be a finite set of normal for-
mulae
and U a finite set of terms .

T̃ UF := {〈A,P , A1, ..., An〉 ∈ T \ T∀ | A ∪ A1 ∪ .. ∪ An ⊆ F}
∪ {〈A, {∀σs}, {[st]}〉 | A ∪ {[st]} ⊆ F and t ∈ U}
∪ {〈A, ∅, {s}, {¬s}〉 | A ∪ {s,¬s} ⊆ F}

We often write T̃ when F and U are clear in context.

We already saw in an example that we have to consider the freshness of
existential witnesses when applying an ∃-step. Therefore we restrict the use
of certain variables. In general a fresh variable can be freely introduced to a
branch by an ¬∀-, a ∀- or a cut-step. A blocked variable however can be only
introduced by an ¬∀-step. As Satallax chooses a new globally fresh witness
every time it adds an ¬∀-clause to the set, we again extract this information
during runtime and represent it as the selecting function S, which maps
witnesses to their selecting formulae. To be able to decide in a refutation
which variables are blocked and in what order they can be introduced, we
define a binary relation <S on the domain of S [21, Def.3.2]. For two variables
x and y, x <S y holds, if x is free in the selecting formula of y, i.e., ¬∀t,
where t := S(y). This relation describes the dependencies between blocked
variables and, if it is acyclic, will describe their order. From this definition it
also follows that <S is irreflexive as x <S x does not hold for any variable x.
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Definition 3.2.4 (relation <S ). For a function S from variables to terms,
<S is the binary relation on variables in dom S,
where for every x, y ∈ dom S, x <S y ⇔ x is free in S(y).
The function S−x : dom S\{x} → ran S is defined by ∀y ∈ dom S−x, S−x(y) =
S(y).

Now we can give an abstract description of the result of Satallax. Called
on the initial assumptions A, Satallax returns the set of formulae F , the
selecting function S and the universe of instantiation terms U . These together
are called an abstract refutation of A if they fulfil the following sufficient
conditions to prove refutability of A:

• The relation <S has to be acyclic and every variable in the domain
of S has to be fresh in A. This ensures that there is an order in
which all witnesses are fresh when instantiated without having cyclical
dependencies between them. This is given by the way Satallax chooses
globally fresh witnesses and their chronological order is a linearisation
of <S.

• Every full expansion B of A either has to be refutable in one step or
there is an x in the domain of S such that its selecting formula and
the negation of its instantiation are on B. The first part means that if,
e.g., for some formulae s and t s,¬t and s→ t are on B, we can refute
B just by applying the tableau rule T→. The second part describes the
case where we would like to close B with T¬∀. As [tx] is on the branch,
x is not fresh anymore and the condition of T¬∀ is violated. However
we presume that there is a way to prevent this case.

The second condition is equivalent to the set of clauses C being proposition-
ally unsatisfiable, which was verified by MiniSat. As every full expansion
B also represents a propositional assignment Φ, there is at least one clause
C ∈ C Φ does not satisfy. Hence B does not satisfy the step encoded by C.
As B is a full expansion this step is enabled and its application closes the
branch.

For example, let us assume the mating clause bp sc t bp tc t bs = tc is
not satisfied by the full expansion B. Thus {p s,¬p t, s = t} ⊆ B. As the
principal formulae p s and ¬p t are on B, we can apply TMAT to refute B by
showing that B ∪ {s 6= t} is closed. This is the case because s = t and s 6= t
are conflicting.
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In a second example let us assume the clause bs = tctbsctbtc is unsatisfied
by B. Thus {s 6= t,¬s,¬t} ⊆ B. The boolean extensionality step 〈B,B ∪
{s,¬t}, B ∪ {¬s, t}〉 is encoded by this clause along with bs = tc t bsc t btc.
As the principal formula s 6= t is on B, we can apply TBE to refute B by
showing that B∪{s,¬t} and B∪{¬s, t} are closed. Again there is a conflict
in both cases closing the branch.

Definition 3.2.5 (abstract refutation). Let A be an open branch,
F a finite set of normal formulae closed under negation,
U a finite set of terms and S a function from variables to terms.
Then we call (F, S,U) an abstract refutation of A, if

1. <S is acyclic (or a strict partial order).

2. For every x ∈ dom S, x is not free in A and ¬∀t ∈ F and ¬[tx] ∈ F ,
where t = S(x).

3. For every full expansion B, either
B is refutable in T̃ UF in one step or
there is an x ∈ dom S such that ¬∀t ∈ B and [tx] ∈ B where t = S(x).

This also has an important consequence for the implementation. We can
often considerably reduce the size of the abstract refutation by taking the
minimal unsatisfiable core of the resulting clause set. As this can only make
F ,S and U smaller. This has the consequence that the <S relation can only
become less restrictive and thus the first and second condition are fulfilled.
The UNSAT core is still propositionally unsatisfiable, which is equivalent to
the third condition as shown above.

3.3 Proof

First we will prove our conjecture with a stronger condition and use this
result as a lemma for the real theorem. For this lemma we assume that
we have an abstract refutation of our initial problem A, but there are no
existential witnesses and thus the selecting function S is empty. We give a
constructive proof of the existence of a refutation by induction. We apply
cut on all formulae in F until every open branch in the refutation is a full
expansion of the initial branch A. Then we can close all of them in one step,
as the one problematic case of applying T¬∀ never occurs.
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Lemma 3.3.1. If (F, ∅,U) is an abstract refutation of A,
then A is refutable in T̃ UF .

Proof. By induction on the distance of A from a full expansion:
In the base case A is a full expansion. As (F, ∅,U) is an abstract refutation
of A, by Definition 3.2.5 A is refutable in T̃ in one step since dom ∅ is empty.
Therefore, A is refutable in T̃ .
As the inductive hypothesis we now assume that for every open branch A′,
where A ⊂ A′ ⊆ F and (F, ∅,U) is an abstract refutation of A′, A′ is refutable
in T̃ .
In the induction step A is not a full expansion of itself. Hence there is a
t ∈ F such that t 6∈ A and t 6∈ A.
By use of Cut on t it is enough to show that A, t and A,¬t are refutable in
T̃ .
As every full expansion ofA, t orA,¬t is a full expansion ofA as well, (F, ∅,U)
is an abstract refutation of A, t and A,¬t. Thus by inductive hypothesis, A, t
and A,¬t are refutable in T̃ .

Now we can prove the real theorem: Given an abstract refutation we can
build a refutation in the finite tableau calculus T̃ . We again use a proof
by induction, where our base case is the lemma we just proved and in each
induction step we reduce the size of S. In each step we introduce one blocked
witness x by applying cut on its selecting formula ¬∀t. This creates two new
branches: One with ¬∀t and another with ∀t. On the former we apply T¬∀.
On the latter we can freely use x, because the branch will be already closed if
we need x as a witness. Thanks to the strict partial order <S we can choose
this witness as a minimal element in the domain of S and thereby prevent
accidentally introducing other witnesses with the cut.

Theorem 3.3.2. If (F, S,U) is an abstract refutation of A,
then A is refutable in T̃ UF .

Proof. By induction on |dom S|:
In the base case dom S is empty. Hence, (F, ∅,U) is an abstract refutation
of A and by Lemma 3.3.1, A is refutable in T̃ .
As the inductive hypothesis we now assume that for every pair (A′, S ′), where
A ⊆ A′ ⊆ F , S ′ ⊂ S and (F, S ′,U) is an abstract refutation of A′, A′ is
refutable in T̃ .
In the induction step dom S is not empty. Therefore there is an x ∈ dom S,
which is a <S-minimal element and for convenience we define t := S(x).
By use of Cut on ∀t , it is enough to show that A,∀t and A,¬∀t are refutable
in T̃ . By Definition 3.2.4 and 3.2.5, x is not free in either A or t.
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Thus, by use of T̃¬∀, it is enough to show that A,∀t and A,¬∀t,¬[tx] are
refutable in T̃ .
To apply the inductive hypothesis, (F, S−x,U) can be used as an abstract
refutation of A, ∀t and A,¬∀t,¬[tx] because:

1. As <S is acyclic, <S−x is acyclic as well.

2. For every y ∈ dom S such that y 6= x, y is free neither in A by
definition 3.2.5.2 nor in t, as y 6<S x. As V [s] ⊆ Vs, y is also not free
in ¬[tx]. Ergo, for every y ∈ dom S−x, y is not free in either A,∀t or
A,¬∀t,¬[tx].

3. As every full expansion B of A,∀t or A,¬∀t,¬[tx] is a full expansion of
A as well, either B is refutable in T̃ in one step or there is a y ∈ dom S
such that ¬∀s ∈ B and [sy] ∈ B where s = S(y). As B is open and
either ¬[tx] ∈ B or ∀t ∈ B, either ¬∀t 6∈ B or [tx] 6∈ B. Thus, for
every full expansion B, either B is refutable in T̃ in one step or there
is a y ∈ dom S−x such that ¬∀s ∈ B and [sy] ∈ B where s = S(y).

Now, A,∀t and A,¬∀t,¬[tx] are by inductive hypothesis refutable in T̃ .

With this we have proven our conjecture that we can find a refutation
for a branch only using the formulae and consequently the refutation steps
Satallax has used in its search.

From another point of view, we can see Theorem 3.3.2 as a kind of com-
pleteness proof for our restricted tableau calculus T̃ . While it is not complete
in general, it is guaranteed to refute A.

The proof also describes one way to construct such a refutation. In a first
phase we introduce all existential witnesses before reconstructing a resolution
refutation like a SAT solver would produce and simultaneously translating it
one to one into a tableau refutation.

Unfortunately this way of doing it is not very practical as the consecutive
cuts produce an exponential number of branches. Even if we apply closing
rules early and subsequently remove redundant branches and thereby may
reach reasonable sized refutations, this would still not be an intuitive tableau
refutation.

In the beginning cut was not even part of the tableau calculus. We just
allowed it as a compromise to complete a refutation in certain special cases,
but now it is almost the only rule applied. All other rules are ignored except
at the beginning and for the leaves of the refutation. It does not make use
of either non-branching rules like T∀ and T¬→ or rules producing more than
one result at once like TCON and TBQ to reduce the number of branches (see
Figure 3.1).

32



¬(∀x.p x x)
∀xy.p x y
T¬∀
¬p z z
TCut

∀x.p z x ¬∀x.p z x
T∀
p z z
 

T∀
∀x.p z x

 

¬(∀x.p x x)
∀xy.p x y
T¬∀
¬p z z
T∀

∀x.p z x
T∀
p z z
 

Figure 3.1: Comparison between two refutations. The left is produced fol-
lowing the method proposed by Lemma 3.3.1 and Theorem 3.3.2,
while in the refutation on the right the steps are applied in an
intuitive order.

Therefore we have chosen a different approach for the actual implementa-
tion, which produces more intuitive and often shorter refutations. However,
it still follows the initial idea the proof is build on: Applying – for the most
part – only the rules Satallax has used to create the propositionally unsatis-
fiable set of clauses.
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4 Implementation

The central idea for the algorithm is that we only need the refutation steps
Satallax has used to create the clauses. We refute the initial branch by
consecutively applying these steps to the resulting branches until all of them
are closed. As the set of clauses is finite and unsatisfiable, any branch, where
all steps encoded in the clauses have been applied, will be closed and the
algorithm is guaranteed to finish eventually. As seen in the first example this
alone can sometimes get stuck when there are still unused steps but none of
them can be applied. In such cases we will use the algorithm described by the
lemma and theorem in Section 3.3 as a fallback and apply cut to introduce
missing formulae to the branch.

This approach allows us to take advantage of the freedom to choose the
next step, when searching for a refutation, as long as we are not introducing
existential witnesses with rules other than T∃. This way we can influence the
structure of the resulting refutation.

We give here an informal description of the algorithm:

We are given a set of steps and the branch we want to refute. We first
remove all steps that are satisfied by the branch. From the remaining steps
we choose one for the current branch. If this step can be applied and respects
the restriction on fresh witnesses, we do so and recursively call the algorithm
on the new branches with the reduced set of steps. Otherwise we use cut to
lift the restriction on a witness or introduce a new formula to the branch and
again continue recursively.

This describes the first part of the implementation, where a refutation is
extracted from the final state of Satallax. As Satallax standardises logical
constants, the starting branch will be different from the initially given higher-
order problem and the refutation will have holes where Satallax has applied
its normalization during the search (see Section 4.3.3). The following trans-
lation will consider the normalizations to fill those holes in the refutation. In
the last part the specified output is created. In our case this is a Coq proof
script and additionally we then account for certain technical details of Coq.
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4.1 Search

The core mechanic of the search is divided into two parts: OR- and AND-
search. While the former chooses from all available steps one to be applied
next, the latter applies this step and continues the search on all resulting
branches. All other functionality is divided between them accordingly.

4.1.1 OR-search

Algorithm 2: or search (Branch B, List〈Step〉 steps)
Output: Refutation

if branch is closed(B) then
return Refutation.conflict(B)

else
steps← remove satisfied steps(B, steps)
t← get next step(B, steps)
return and search(B, t, steps)

In the beginning OR-search is called on the branch containing only the
initial assumptions and a list of steps derived from the clauses found by
Satallax.

The first thing OR-search does is checking whether the given branch is
closed. For this, the old branch and the newly added formulae are given
separately and then merged one by one. Should one of them be ⊥, a negation
of a trivial equation, e.g., s 6= s for some term s, or having its negation already
on the branch, a corresponding leaf of the refutation is returned.

If this is not the case, the next step will be to remove satisfied steps from
the list. As a reminder a step will be satisfied, if its application leaves at
least one branch unchanged or if the negation of one of its principal formulae
is on the branch, which means that the branch will be closed anyway when
this step becomes applicable. As this is equivalent with the propositional
assignment of the branch satisfying the clause encoding the step, we say it
is satisfied.

Following on this, a step is chosen from the remaining list. As described
in the proof, the only condition for choosing this clause is that we are not
introducing any existential witnesses which might need to be fresh later in
the refutation. We prevent this by marking variables as blocked if there is
an ∃-step on the list selecting it as a witness. A blocked variable can only be
introduced by its selecting step. On the other hand this means that if there
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is no such step or it has been removed, the variable can be freely used. Note,
that choosing the steps in the order Satallax produced the corresponding
clauses fulfils this condition.

In the end AND-search is called with the updated branch, step list and
chosen step.

4.1.2 AND-search

Algorithm 3: and search(Branch B, Step t, List〈Step〉 steps)
Output: Refutation

if can apply(B, t) then
subbranches← apply step(B, t)
sub refutations← []
for subbranch in subbranches do

sub refutations← or search(subbranch, steps) ::
sub refutations

return Refutation.make(t.get rule(), sub refutations)

else
c← get missing principal(B, t)
left← or search(B ∪ {c}, steps)
right← or search(B ∪ {c}, steps)
return Refutation.make(Cut, [left, right])

The behaviour of AND-search depends on whether the given step can be
applied to the branch. As it is assumed that the freshness of witnesses was
preserved, the only thing to check is whether the step’s principal formulae
are on the branch.

If this is the case, we apply the step and recursively call OR-search on every
new branch. We then combine the resulting refutations into one refutation
node corresponding to the applied step.

In the negative case, there is at least one principal formula which is not on
the branch. On this formula we apply cut. This gives us two new branches:
One of them has the missing principal formula and if it was the only one
missing, we can apply the step should it be chosen again. As the other branch
contains the negation of the step’s principal formulae, it is now satisfied and
will be removed. After this we continue the same way as in the first case by
refuting both branches and creating a new refutation node.
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4.2 Refinements

With these two functions calling each other recursively we have a simple
working core for our search. In the following we will introduce refinements
to increase speed and reduce the size of the result.

4.2.1 Preprocess

Before we start the search, there are several things we can prepare to improve
performance.

UNSAT-core

As mentioned in a remark at the end of 3.2 the algorithm will still work, if we
replace the set of clauses from the final state by a minimal UNSAT core. For
an efficient generation of the core, we use PicoMus [9], because MiniSat
does not have this functionality. In our tests at least 50% of the clauses are
removed, but usually far more and in some cases more than 99%.

Turn Clauses into Steps

Algorithm 4: class Step

Rule rule
List<int> principal formulae
List<List<int>> alternatives
List<string> witnesses
Step make(List<int> clause, List<string> global witnesses)
bool satisfied(Branch B)

To avoid redundant computations during the search we first turn the propo-
sitional clauses into a more general data structure: Steps. They are not the
same as tableau steps, but sets of tableau steps. While the principal formulae
and side formulae are fixed, the actual branch will be taken from the context
of the search. This means that in the AND-search branch B and step t will
together define a single tableau step. Additionally, the step structure con-
tains precomputed information about existential witnesses appearing free in
the step. As Satallax produces for some rule more than one clause, e.g., two
for T¬→ and four for TCON , changing to steps reverts these clauses back into
one step and we only need one of those clauses to reconstruct the step.
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Adding Symmetric Steps

After we have removed a lot of clauses by computing a minimal core, this
preprocessing step appears counter-intuitive at first. With an exponential
worst case complexity depending on the number of steps one might think,
that the search is faster with as few steps as possible. However, in some test
cases the refutation becomes smaller when we put certain steps back that
have been removed. Although the algorithm is still able to find a refutation,
with fewer steps to choose from it has a higher chance to need a cut in order
to enable a rule. This sometimes leads to more subtrees and in general a
larger refutation. In these special problems the solution was to add for every
mating step the symmetric version, i.e., we switch the signs of the principal
formulae. We give an example in Section 5.2. This can be done with the
confrontation rule as well. However, these new steps do not increase the worst
case runtime, because one will be satisfied if the other is enabled. Thus at
most one of them can be applied in a given branch.

Sorting

The last preprocessing step is to sort the list of steps. We order the steps
following three criteria:

At the beginning of the list the ∃-steps are chronologically ordered, which
is the same order they have been in before. This will be required by the
procedure choosing the steps.

The remaining steps are in an ascending order by the number of subgoals
their application creates. As we need a refutation for every subgoal, it is
usually better to first apply rules with fewer subgoals. For example, if we
have a step with two and one with three alternatives and need to apply
both, in the worst case we get six branches, but in one case we have applied
three steps (see Figure 4.1.a)) and in the other four (see Figure 4.1.b)). Of
course, if two branches were closed after applying the three-alternative step,
we would only need two steps (see Figure 4.1.c)). However as we cannot
know this without trying both ways, we choose the first as the worst case
yields a smaller refutation.

The last criterion is the number of the side formulae occurrences on other
steps. Steps with the same number of alternatives are sorted by this criterion
in descending order. This way steps with a larger impact on all other steps,
either satisfying or enabling them, come first in the list.
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Figure 4.1: Three possible refutations with two steps: T2 with two alterna-
tives and T3 with three alternatives.

4.2.2 Heuristic

We already described which conditions the procedure that chooses the next
step in OR-search must fulfil. However these restrictions are rather weak
and leave us with a lot of choices. Many algorithms use heuristics for such
decisions. Actually the main part of our heuristic is already describe in
Section 4.2.1.

When we call the procedure that chooses the next step, we assume that
the given list contains no steps which are satisfied by the current branch and
that all ∃-steps are at the head of the list. We then iterate over the list
until we find a suitable step, i.e., the step is enabled and does not contain
a blocked variable. At the beginning the set of blocked variables is empty.
For every unsuitable ∃-step we add its witness to the set. This way we make
sure that the witnesses of ∃-steps that could be applied later stay fresh. If we
arrive at the end of the list without finding a suitable step, the first step in
the list will be returned. While there are still ∃-steps this results in a forced
introduction of the witness via cut.

In this approach the position in the list decides which step among the
suitable steps is chosen. As the search does not change the order of the list
the initial sorting determines the chosen step. We also tried in the imple-
mentation to apply dynamic heuristics which consider the current branch.
However, while they required a significant amount of computation, their ef-
fect on the result was negligible. The most reasonable explanation for this
is that the steps left in the unsatisfiable core at the beginning are approxi-
mately equally important for the refutation. Also, there are often not more
than a few steps suitable at a time. Thus the order in which they are applied
is unimportant.
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4.2.3 Tracking Dependencies

As we cannot know in advance how the branches of a certain rule application
will be refuted, it is very likely that we apply unnecessary steps during the
search. However, afterwards we can at least check whether a step was neces-
sary. If one subrefutation does not use the side formulae added in that step,
we can remove the step and instead use this independent refutation to refute
the branch. If we do this during the search each time OR-search returns a
refutation, we will even save work in case the step had more open branches.

The implementation handles this by adding to a refutation its dependency.
For a leaf of the refutation those are the literals that directly cause the branch
to be closed. For a node the dependency is the union of the step’s principal
formulae and the dependencies of its subrefutations, where the corresponding
side formulae have been removed. This way we get for a node the subset of
the current branch that has indirectly caused it to be closed.

In a propositional context we can see dependencies as learnt clauses [19],
where we are backtracking tableau steps instead of backtracking propagation.
Following this comparison suggests to implement learning as well, which we
leave for future work.

4.2.4 Semantic Branching

In the example in Section 2.3.1 we not only show that cut is in special cases
necessary, but can also reduce the size of the result. Although our implemen-
tation still tries to avoid cut when possible, as it might make things worse,
semantic branching [11] gives us a tool to use cut to enhance a regular step.

For example, assume we have an implication s→ t on the branch. Instead
of applying T→ we first use cut on s and then apply T→ on the first subgoal.
This results in three branches (see Figure 4.2 case 4). The first is closed as it
contains both s and ¬s. The third branch with ¬s already satisfies the →-
step. The second branch now contains t and s instead of just t. This means
should later in the refutation a step have ¬s as a side formula this branch will
be closed. Otherwise we would in the worst case have to repeat the whole
refutation of our third branch. The same argument works analogously for a
cut on t.

By using dependency tracking in Section 4.2.3 we can even try both se-
mantic and the syntactic rule at the same time while only adding constant
overhead:

In our example we first refute the branch with t and s added. If s is in
the dependency of this refutation, we use semantic branching with cut on
s. Otherwise, we refute the branch with ¬s and ¬t added. If ¬t is in the
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dependency, we use cut on t. If not, then we use just syntactic branching. Of
course, there are more cases which are considered in Algorithm 5 and Figure
4.2.

In our tableau calculus semantic branching can be used in a similar way
with the confrontation rule (Figure 4.3), mating rule and decomposition rule
(Figure 4.4), too.

Algorithm 5: semantic branching for implication

Input: Term s, Term t and Branch B, where s→ t ∈ B
Output: Refutation

if s ∈ B or ¬t ∈ B then
Case 1: syntactic branching (Figure 4.2)

else
(R1, D1)← or search(B ∪ {s, t})
if s ∈ D1 then

(R2, D2)← or search(B ∪ {¬s})
if t 6∈ D1 and ¬s ∈ D2 then

Case 2: only cut on s (Figure 4.2)
else if t ∈ D1 and ¬s ∈ D2 then

(R2, D2)← or search(B ∪ {¬s})
Case 4: semantic branching with cut on s (Figure 4.2)

else /* ¬s 6∈ D2 */

Case 7: refutation R2 is independent

else if s 6∈ D1 and t ∈ D1 then
(R2, D2)← or search(B ∪ {¬t,¬s})
if ¬t 6∈ D2 and ¬s ∈ D2 then

Case 1: syntactic branching (Figure 4.2)
else if ¬t ∈ D2 and ¬s 6∈ D2 then

Case 3: only cut on t (Figure 4.2)
else if ¬t ∈ D2 and ¬s ∈ D2 then

Case 5: semantic branching with cut on t (Figure 4.2)
else /* ¬t 6∈ D2 and ¬s 6∈ D2 */

Case 7: refutation R2 is independent

else /* s 6∈ D1 and t 6∈ D1 */

Case 6: refutation R1 is independent
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Case 1: Case 2: Case 3:
s→ t
T→

¬s t
R2 R1

s→ t
TCut
s ¬s
R1 R2

s→ t
TCut
t ¬t
R1 R2

Case 4: Case 5:
s→ t
TCut
s ¬s
T→

¬s t
 R1

R2

s→ t
TCut

t ¬t

R1

T→
¬s t
R2  

Figure 4.2: Case 1: Syntactic branching; Case 2: Cut on s; Case 3: Cut on
t; Semantic branching with... (Case 4: ...cut on s; Case 5: ...cut
on t)

s = t
u 6= v
TCut

t = v t 6= v
Trans.
s = v
TCON

s 6= u s 6= v
t 6= u t 6= v
R1  

TCON
s 6= t s 6= v
t 6= t t 6= v
 R2

s = t
u 6= v
TCut

t = u t 6= u
Trans.
s = u
TCON

s 6= u s 6= v
t 6= u t 6= v
 R2

TCON
s 6= t s 6= u
t 6= t t 6= u
 R1

Figure 4.3: Semantic branching for confrontation. Although strictly they are
not steps in T̃ we use transitivity of equality and an additional
confrontation step. Transitivity could be replaced by another
confrontation step at a later point in the refutation, but it would
creates more branches and could be required more often than an
immediate application of transitivity.
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ps1 . . . sn
¬pt1 . . . tn
TCut

sρ(n) = tρ(n) sρ(n) 6= tρ(n)
... . .

.

TCut
sρ(1) = tρ(1) sρ(1) 6= tρ(1)
TMat

s1 6= t1 · · · sn 6= tn
  

Rρ(1)

. .
.

Rρ(n)

ps1 . . . sn 6= pt1 . . . tn
TCut

sρ(n) = tρ(n) sρ(n) 6= tρ(n)
... . .

.

TCut
sρ(1) = tρ(1) sρ(1) 6= tρ(1)
TDec

s1 6= t1 · · · sn 6= tn
  

Rρ(1)

. .
.

Rρ(n)

Figure 4.4: Semantic branching for mating and decomposition. ρ is a per-
mutation of {1..n} depending on the resulting conditions of the
subrefutations. The final step can be shortened by removing cuts
for unused dependencies.

4.3 Translation

After we have found a refutation in the first part of our implementation the
next step is to apply a translation, which considers the standardisation and
normalization Satallax uses. The goal of this is to turn the refutation we
found into one that matches the initial problem and explicitly states the
used rewrite steps.
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4.3.1 Normalization

The normalization of Satallax [.] consists of the following parts:

Standardisation

When given a THF file Satallax first preprocesses the problem to remove all
logical constants except ⊥,→,∀σ,=σ and εσ. For convenience we continue to
write ¬s for s → ⊥. As Satallax works with classical, extensional logic, we
can replace the remaining constants using equivalences like s ∨ t ≡ ¬s → t,
∃x.s ≡ ¬∀x.¬s and s↔ t ≡ s =o t. This is done to reduce the complexity of
the tableau calculus Satallax works with. This standardisation is only applied
once, as the rules of the calculus do not introduce new logical constants that
are not supported.

Reductions

Besides the basic βη-reduction Satallax also applies δ-reduction and removes
double negations. For the former Satallax uses the equivalence ¬¬s ≡ s
not just on the top-level of a formula, but on each subterm to remove double
negations at any position in the formula. Besides axioms and a conjecture Sa-
tallax allows definitions in the input. However any definition is immediately
δ-normalized away by inserting them in the assumptions. These reductions
are applied to every term during Satallax search to convert them to their
normal form.

Leibniz Equality

Under certain flag settings Satallax also rewrites Leibniz equality into prim-
itive equality before starting the search. That is, it replaces terms like
∀p.p s → p t by s = t. Besides Leibniz equality there are many equiv-
alent ways to express equality in higher-order logic. Satallax also regards
∀r.(∀x.r x x)→ r s t (See X5303 in [3]) and both contrapositions ∀p.¬p s→
¬p t and ∀r.¬r s t→ ¬(∀x.r x x) as equality.

Symmetry

Yet another kind of normalization is the way Satallax handles symmetry of
equations. Satallax regards two formulae of the form s = t and t = s as the
same literal. To achieve this it takes the formula it encounters first as default
and normalizes every following appearance to this default formula.
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4.3.2 Rewrites

Algorithm 6: rewrite(Term t, Variable z)

Input: z 6∈ FV (t) ∧ z 6∈ BV (t)
Output: (Term context, Term replaced, Term inserted) , where

p := λz.context is a predicate such that p replaced =β t
switch t do

case λx.p x and x 6∈ FV (p)
return (z p, λfλx.f x, λf.f) /* eta */

case ¬¬s
return (z s, λx.¬¬x, λx.x)

case >
return (z,>,¬⊥)

case ∨
return (z,∨, λxλy.¬x→ y)

case ∧
return (z,∧, λxλy.¬(x→ ¬y))

case ↔
return (z,↔, λxλy.x = y)

case ∃σ
return (z,∃σ, λp.¬∀σ(λx.¬p x))

case λx.s
(con, re, in)← rewrite(s)
return (λx.con, re, in)

case s t
try
(con, re, in)← rewrite(s)
return (con t, re, in)
catch No rewrite
(con, re, in)← rewrite(t)
return (s con, re, in)

otherwise
throw No rewrite

Even though it holds for the normalization that [s] = s for all terms s,
Coq does not support all the necessary equations and reductions by default.
To solve this we will explicitly state every normalization step except β- and
most δ-reductions in the refutation as a rewrite step.
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Those steps use the Leibniz property of equality, i.e., for every predicate p
and terms s and t we can infer p t from s = t and p s.

∀p.p s→ s = t→ p t

For example, assume we want to simplify the formula s ∧ t (≡ and s t)
by expressing the conjunction with implication and False. s and t are hence
fixed as and and λxλy.¬(x→ ¬y). However we still have to find a predicate
p such that (p and) β-normalizes to s ∧ t. For this we use Algorithm 6. In
our example p is the term λq.q s t. We then use Leibniz with (λq.q s t)and
and the equality and = λxλy.¬(x→ ¬y) to get (λq.q s t)(λxλy.¬(x→ ¬y)),
which reduces to ¬(s→ ¬t).

4.3.3 Lazy Rewriting

Although the translation is correct if we completely normalize each term
using rewrites, this can become problematic in regard of the output size.
Assume we have to refute a problem with very long formulae. As rewriting
requires an explicitly stated predicate practically the size of the formula, it
can have a large effect on the length of the final proof script. In some test
instances the script reached a size of over six megabytes, where these long
formulae made up almost the complete file (see Section 5.4).

Then again, tactics that only need formulae on the branch are short be-
cause the branch will be in Coq’s state and can be referenced by identifiers.
Therefore we would like to avoid rewrites as much as possible.

To achieve this the translation only applies single normalization steps using
rewrites if it is necessary.

4.3.4 Alternative Tableau Rules

If we look at a formula like s∨ t, we can ask ourselves why we should rewrite
it to ¬s → t and then apply T→ instead of just T∨ without the rewrite.
Comparing those two rules reveals that their principal formulae and side
formulae are equal up to normalization. The same holds true for all logical
constant that are removed by standardisation in Section 4.3.1.

Therefore we go back from the restricted tableau calculus T (Figure 2.2)
Satallax uses to the full tableau T + (Figure 2.3). During the translation
we will then change refutation steps to a corresponding rule if this avoids
rewriting the principal formulae and the new alternatives are equal to the
old up to normalization.

Additionally, we can remove double negations in front of a formula by
applying T¬¬ instead of a rewrite.
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4.3.5 δ-reduction

When handling a problem which is described using many definitions, nor-
malized formulae in the refutation can become very long. As mentioned in
Section 4.3.3, this can become problematic. Therefore, we delay δ-reductions
and handle them in a similar way to rewrites. To shorten the printed length of
formulae definitions will only be inserted if it is necessary for the translation
to continue.

As Coq will automatically try to δ-reduce if it cannot apply a tactic to
a given formula, we do not have to state the reductions explicitly except for
TMAT and TDEC .

Assume we have a definition binomial 3 a b := add (mul a a) (mul b b) and
the formula binomial 3 x1 y1 6= binomial 3 x2 y2. If the refutation asks for
the application of TDEC , Satallax and Coq will handle this differently. While
Satallax has normalized the formula and expects {mul x1 x1 6= mul x2 x2}
and {mul y1 y1 6= mul y2 y2} as the alternatives, Coq could immediately
apply the rule and produce the alternatives {x1 6= x2} and {y1 6= y2} instead.
This would then create a discrepancy between Coq’s state and the expected
state and the refutation would fail.

Our solution is to put an unfold tactic in the proof script in such a case
to ensure that Coq reaches the same result as is expected in the refutation.

4.3.6 Symmetry

The Satallax way of handling symmetry of equality makes it hard to deal
with, because it is difficult to tell which form is the default. However, as
Satallax only considers symmetry at the top of a formula, we can again
avoid this usually by adjusting the affected refutation steps TMAT , TDEC ,
TCON , TBE, TBQ, TFE and TFQ accordingly.

For example, let us assume one step of our refutation uses TBE on the
formula s 6=o t to get the alternatives {s,¬t} and {¬s, t}, but only t 6=o s is
on the branch. To strictly apply the step we would have to use symmetry to
rewrite it first. However, we can just apply the rule on the formula we have
to get instead the slightly different alternatives {t,¬s} and {¬t, s}. We now
just have to switch the subrefutations to fix it again.

In a second example, let us assume we are trying to use TDEC on the
formula p s 6= p t to get the alternative {s 6= t}, but only p t 6= p s is on the
branch. We again just apply the rule to get instead the alternative {t 6= s}.
This time we have moved the symmetry down in the refutation.

Eventually, we might have to apply symmetry only in a leaf to close the
branch.
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4.4 Output

The last part of the implementation prints the Coq proof script. The file
contains a list of tactics describing step by step the proof of the given theorem
to Coq. If Coq successfully checks the script, it will have constructed a
correct proof term and thereby verify our proof.

4.4.1 Coq Proof Script

When Coq starts checking the proof, it will have the axioms as hypotheses
and the conjecture t as the goal. In our first tactic we replace the goal with
⊥. By applying the double negation law ∀x : o.¬¬x→ x we get the new goal
¬¬t. As ¬ is just a notation, this is the same as ¬t→ ⊥. After introducing
¬t as a new hypothesis, we are left with ⊥ as our goal. If there was no
conjecture the claim ⊥ becomes the goal. Now, the hypotheses in global
and local context correspond to our branch and proving ⊥ means closing the
branch. From here we continue the refutation with our own tactics, which
simulate the tableau steps.

4.4.2 Tactics

Coq allows us to define tactic macros by using tacticals to combine tactics.
We use s; t, which applies tactic t to every subgoal created by s, s; [t1 | . . . | tm],
which applies tactic tn to the nth subgoal created by s, and s || t, which will
apply tactic t, if s fails.

Tactic macros can also have variables as arguments. Those variables simply
hold strings which are inserted into the macro when it is applied. In general
each macro will only need the identifiers of the necessary hypotheses and
fresh identifiers for the side formulae.

Closing Tactics

Ltac tab false H := apply H.

Ltac tab conflict H H’ := apply (H’ H) || apply (H’ (sym eq H)).

Ltac tab refl H := apply (H (refl equal )).

Figure 4.5: The three closing tactics.

There are three closing tactics to simulate closing a branch by proving the
goal ⊥. The first – tab false H – is used when ⊥ is an assumption and just
applies this assumption to prove the subgoal.
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The second tactic – tab conflict H H’ – uses a conflict to close the
branch by first applying H’ and then H, if the assumption H’ is the negation
of H. As mentioned in Section 4.3.6 we also consider symmetry of equality in
this macro. For example, if H’ is s 6= t and H is t = s, our first attempt will
fail and we instead first use the predefined name sym eq on H to get s = t.

The third tactic – tab refl H – proves ⊥ from an assumption of the form
s 6= s. We apply H and prove the new subgoal s = s by induction using the
fact that Coq is able to deduce s from H.

Branching and Non-branching Tactics

The remaining tactics simulate tableau steps with at least one alternative.
Most of them work the same:

Assume we have a tableau step with the principal formulae s1, ..., sl and the
alternatives {t1,1, ..., t1,m}, ..., {tn,1, ..., tn,m}. The corresponding tactic refines
the lemma

s1 → ...→ sl → (t1,1 → ...→ t1,m → ⊥) → ...

...→ (tn,1 → ...→ tn,m → ⊥) → ⊥.

By providing the principal formulae we are left with proving n new subgoals,
where we can introduce m new assumptions leaving ⊥ again as the goal.
Note that in our tableau calculus every rule has in each alternative the same
number of side formulae – either one or two –, which allows us to have a
uniform m. For each tableau rule we prove the corresponding lemma in
advance. A few examples are given in Figure 4.6.

Exceptions are the ∀-, ∃-, cut- and choice-tactic, where we also have to
give the instantiation term, witness, cut-formula or predicate respectively.

For the implementation of the mating and decomposition rule, which can
have an arbitrary number of alternatives, a recursive macro is required (Fig-
ure 4.7). After an initial part both tactics call a recursive macro. Thereby,
the mating tactic combines the two predicates into an inequality, which is
then handled by the decomposition tactic. With each recursive call the last
arguments are removed and two new subgoals are created: For the first the
reduced inequality replaces the former assumption and for the second we get
the inequality of the two arguments as a new assumption. The macro is then
called again on the first subgoal and if the inequality cannot be reduced any
further, it will be of the form s 6= s and the branch can be closed.
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Lemma TImp : ∀s t : o.(s→ t)→ (¬s→ ⊥)→ (t→ ⊥)→ ⊥.
Ltac tab imp H H1 := apply (TImp H) ; intros H1.

Lemma TAll : ∀(σ : Type)(p : σo).(∀x : σ.p x)→ ∀y : σ.(p y → ⊥)→ ⊥.
Ltac tab all H y H1 := apply (TAll H y) ; intros H1.

Lemma TNegAll : ∀(σ : Type)(p : σo). ¬(∀x : σ, px)→
(∀y : σ.¬py → ⊥)→ ⊥.
Ltac tab negall H y H1 := apply (TNegAll H); intros y H1.

Lemma TCON : ∀(σ : Type)(s t u v : σ).(s = t)→ (u 6= v)→
(s 6= u→ t 6= u→ ⊥)→ (s 6= v → t 6= v → ⊥)→ ⊥.
Ltac tab con H1 H2 R1 R2 := apply (TCON H1 H2) ; intros R1 R2.

Lemma TBE : ∀s t : o.(s 6= t)→ (s→ ¬t→ ⊥)→ (¬s→ t→ ⊥)→ ⊥.
Ltac tab be H H1 H2 := (apply (TBE H) ; intros H1 H2).

Lemma TFE :∀(σ τ : Type)(s t : στ). (s 6= t)→
(¬(∀x : σ.s x = t x)→ ⊥)→ ⊥.
Ltac tab fe H H1 := (apply (TFE H) ; intros H1).

Figure 4.6: Examples for typical branching tactics: T→, T∀, T¬∀, TCON , TBE
and TFE. Note that T¬∀,TBE and TFE require classical, proposi-
tional extensionality and functional extensionality .

Simple Types

As described in Section 3.2 we allow variables that are not blocked to be
introduced not only by an ∃-step, but also by ∀- and cut-steps. However,
we cannot just introduce a new variable in Coq as this would ignore the
possibility that their type is empty. Therefore we define simple types as
a construct in Coq which combines a Coq base type with a proof of its
inhabitation. Additionally we give an arrow operator for creating function
types from simple types.

We use this in the tab inh tactic to introduce fresh variables before ap-
plying cut or ∀-steps.
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Lemma TMat : ∀(σ : Type)(s t : σ)(p q : σo). p s→ ¬q t→
(p 6= q → ⊥)→ (s 6= t→ ⊥)→ ⊥.

Lemma TDec : ∀(σ τ : Type)(s t : σ)(p q : στ). p s 6= q t→
(p 6= q → ⊥)→ (s 6= t→ ⊥)→ ⊥.

Ltac tab dec’ R := (refine (TDec R ); clear R;

[intro R; tab dec’ R | intro R]) || (apply R; reflexivity).

Ltac tab dec H R := (apply H; reflexivity) ||
(refine (TDec H );[intro R; tab dec’ R | intro R] ).

Ltac tab mat H1 H2 R := refine (TMat H1 H2 );

[(intro R; tab dec’ R ) | intro R]) ||
(refine (TMat H2 H1 );[(intro R; tab dec’ R ) | intro R].

Figure 4.7: The Mating and Decomposition tactics.

Choice

Similar to Leibniz-equality, there are several ways to describe a choice op-
erator in higher-order logic. If Satallax detects a hypothesis of one of the
following two forms:

∀(q : σo), (∃y : σ, q y)→ q(ε q)

∀(q : σo)(y : σ).q y → q(ε q)

for some variable ε of type (σo)σ, it will forget this hypothesis and instead
consider ε as a choice operator in the search.

Therefore, we need a tactic macro for both cases: One, where we have a
choice operator, and another, where we have a name with equivalent prop-
erties provided by an assumption. In both cases the tactic begins with a cut
on ∀x,¬px, where p is the predicate we want to use choice on.

On the first subgoal we can introduce our new assumption and have ⊥
again as the goal. On the second subgoal we use a corresponding lemma. In
the first case we use the property of the choice operator and in the second we
consecutively try lemmas for each higher-order variation until one of them
matches the given hypothesis. The lemmas and macros are shown in Figure
4.8.
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Lemma TSeps :∀(σ : SType)(p : σo).(p(Sepsilon p)→ ⊥)→ ∀x : σ.¬p x.

Lemma TSeps’ :∀(σ : SType)(ε : (σo)σ)(p : σo).
(∀(q : σo)(y : σ).q y → q(ε q))→ (p(ε p)→ ⊥)→ ∀x : σ.¬p x.

Lemma TSeps’’ :∀(σ : SType)(ε : (σo)σ)(p : σo).
(∀q : σo.¬(∀y : σ.¬q y)→ q(ε q))→ (p(ε p)→ ⊥)→ ∀x : σ.¬p x.

Lemma TSeps’’’ :∀(σ : SType)(ε : (σo)σ)(p : σo).
(∀q : σo, (∃y : σ.qy)→ q(ε q))→ (p(ε p)→ ⊥)→ ∀x.¬p x.

Ltac tab choice p R := (cut (∀x.¬p x);
[intro R | (refine (TSeps p ); intro R) ]).

Ltac tab choice’ p H R := (cut (∀x.¬p x);
[intro R | ((refine (TSeps’ H ) || refine (TSeps’’ H ) ||
refine (TSeps’’’ H )); intro R)]).

Figure 4.8: The choice tactic.

Rewrites

Although Coq already has a rewrite tactic, we again define our own macros
for rewriting, because Coq’s tactic does not provide the desired level of
control. Instead we use another of Coq’s predefined names:

eq ind : ∀{σ : Type}(x : σ)(P : σo).P x→ ∀y : σ.x = y → P y

Here we use the predicate P we have extracted in the translation (Algorithm
6). For each kind of rewrite we define a corresponding macro, where x and
y are fixed and the equality x = y has again been proven beforehand. Thus
each tactic only needs the predicate P and the identifier of P x. The result
P y is then β-normalized and introduced as a new hypothesis (Figure 4.9).
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Lemma eq or imp : or = λx y : o.¬x→ y.

Ltac tab rew or H R con :=

generalize (eq ind or (con) H (λ(xy : o).¬x → y) eq or imp);

intros R; simpl in R.

Lemma eq eta :∀σ τ : Type.(λf : στ.λx : σ.f x) = (λf : στ.f).

Ltac tab rew eta H R con :=

generalize (eq ind (λf x.f x) (con) H (λf.f) eq eta);

intros R; simpl in R.

Lemma eq leib :∀σ : Type.(λs t : σ.∀p : σo.p s→ p t) = (λs t : σ.s = t).

Ltac tab rew leib H R con := generalize

(eq ind (λs t.∀p : o.p s→ p t) (con) H (λs t.s = t) eq leib);

intros R; simpl in R.

Figure 4.9: Examples for rewrite tactics.
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5 Results and Examples

In this chapter we want to give some examples from the TPTP [22] and the
results of the implementation under certain flag settings.

5.1 “Easy” and “Hard” Problems

In Section 6 of [10] some of the success of Satallax is attributed to its ability
to solve problems by brute force. One such problem is SYO181ˆ5 which is
known as McCarthy’s Tough Nut or the mutilated checkerboard problem [4,
20]. The problem says that it is impossible to cover each tile of a checkerboard
with two opposing corners removed with dominoes. Satallax is able to almost
immediately solve the problem formulated in propositional logic. It thereby
creates just 1154 clauses with 684 clauses required to show unsatisfiability.
We could therefore describe the problem as “easy” for Satallax. Creating a
refutation however does not succeed. Even after searching for several minutes
and creating a partial refutation with several ten thousand steps, the search
does not finish. Thus, while easy for Satallax the problem is “hard” for our
implementation.

The other extreme is the second problem described in [10] that is not in
TPTP:

(∀x.∀y.f x = f y)→ ∃g.∀x(g(f x)) = x

Here, it takes Satallax about a minute to produce over one hundred thousand
clauses, while trying higher-order instantiations. However, with only ten of
them ultimately needed creating a proof script is done in an instant. This
time creating the proof is “easy” as Satallax has done the “hard” work by
finding the right instantiation term.

Fortunately, the higher-order case is more interesting for constructing a
proof because there are already many provers that can handle the proposi-
tional case well.

55



5.2 Effect of Adding Symmetric Steps

In Section 4.2.1 we described that putting certain clauses back after the
reduction to the core can make the resulting refutation shorter. We observed
this first on the SYO500ˆ1.00* problems. Those problems are variants of
Kaminski’s equation [18]. For example f1(f1(f1(f2 x))) = f1(f2(f2(f2 x)))
with x of type o and f1, f2 of type oo. In Figure 5.1 we give the results
for these problems for two flag settings. In the first we only use the steps
encoded by the core, while in the second setting we add for each mating
rule another one that has the signs of the principal formulae switched. For
example, if we have the steps 〈A, {f x,¬f(f(f x))}, {x 6= f(f x)}〉 we will
also allow 〈A, {f(f(f x)),¬f x}, {f(f x) 6= x}〉 (see Figure 5.2). While we
repeatedly run out of enabled steps in the first setting and have to resort to
cut, after adding more steps we get refutations entirely without cuts which
are on average 5% shorter.

Problem UNSAT core W/o adding steps With adding steps
clauses steps cuts steps cuts

SYO500ˆ1 15 21 0 21 0
SYO500ˆ1.002 31 73 2 69 0
SYO500ˆ1.003 47 195 6 195 0
SYO500ˆ1.004 63 377 10 357 0
SYO500ˆ1.005 79 773 16 741 0
SYO500ˆ1.006 95 1597 44 1509 0
SYO500ˆ1.007 111 3221 88 3045 0
SYO500ˆ1.008 127 6493 188 6117 0

Figure 5.1: The results for the Kaminski problems: Number of clauses in the
core, number of steps and cuts in the refutation without adding
clauses and with adding steps.

5.3 Effect of Semantic Branching

In Section 4.2.4 we describe semantic branching as a way to use cut to re-
duce the size of a refutation. An example for this are the four problems
SYO068ˆ4.001, SYO068ˆ4.005, SYO068ˆ4.010 and SYO068ˆ4.020 which are
modal logic problems from the ILTP [24] embedded in THF. In the problems
we have a reflexive and transitive relation r and n+ 1 predicates p0 to pn.

We have ∀x.p0 x as the conjecture and as assumptions ∀x.pn x and

∀z.(∀x.r z x→ pi x)→ ∀y.r z y → (∀x.r y x→ pi x)→ ∀x.r y x→ pi−1 x
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f x 6= f (f (f x))
TBE

f x ¬f x
¬f (f (f x)) f (f (f x))
TMAT

x 6= f (f x)
TBE

x ¬x
¬f (f x) f (f x)
TMAT

x 6= f x
TBE
x ¬x
¬f x f x
  

TMAT

f x 6= f (f x)
TBE

f x ¬f x
¬f (f x) f (f x)

  

TMAT

f (f x) 6= x
TBE

f (f x) ¬f (f x)
¬x x
TMAT

f x 6= x
TBE

f x ¬f x
¬x x
  

TMAT

f (f x) 6= f x
TBE

f (f x) ¬f (f x)
¬f x f x
  

Figure 5.2: The refutation of Kaminski’s equation SYO500ˆ1. As the appli-
cation of the corresponding mating steps is followed by refutations
that seem symmetric, we call the steps symmetric.

for every i ∈ 1, ..., n. Table 5.3 shows the results for these problems. The
number of steps in the refutation grows exponentially with the number of
clauses in the UNSAT core if we just use syntactic branching. However if we
apply semantic branching on implication the size of the refutations becomes
linear. We give the refutation with semantic branching for SYO068ˆ4.001 in
Figure 5.4. There we can see that the refutation for one side of the cut is
only done once. Without the cut it appears twice on the other side.

Problem UNSAT core syntactic branching semantic branching
clauses steps cuts steps cuts

SYO068ˆ4.001 16 20 0 19 1
SYO068ˆ4.005 39 324 0 59 5
SYO068ˆ4.010 69 10249 0 109 10
SYO068ˆ4.020 129 1144300 0 209 20

Figure 5.3: The results for the four SYO068ˆ4 problems: Number of clauses
in the core, number of steps in the refutation without and with
semantic branching.
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∀x.rxx
∀z.∀y.∀x.¬(rzy → ¬ryx)→ rzx

∀x.p1x
∀z.(∀x.rzx→ p1x)→ ∀y.rzy → (∀x.ryx→ p1x)→ ∀x.ryx→ p0x

¬(∀x.p0x)
T¬∀
¬p0a
T∀

(∀x.rax→ p1x)→ ∀y.ray → (∀x.ryx→ p1x)→ ∀x.ryx→ p0x
T∀
raa
TCut

∀x.rax→ p1x ¬∀x.rax→ p1x
T→

¬∀x.rax→ p1x ∀y.ray → (∀x.ryx→ p1x)→ ∀x.ryx→ p0x

 

T∀
raa→ (∀x.rax→ p1x)→ ∀x.rax→ p0x

T→
¬raa (∀x.rax→ p1x)→ ∀x.rax→ p0x

 

T→
¬∀x.rax→ p1x ∀x.rax→ p0x

 

T∀
raa→ p0a
T→

¬raa p0a
  

T¬∀
¬(rab→ p1b)
T¬→
rab
¬p1b
T∀
p1b
 

Figure 5.4: Refutation for problem SYO0684̂.001 with semantic branching.
Due to the cut on ∀x.r a x → p1 x the subrefutation on the last
branch appears only once instead of twice on the first and third
branch.
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5.4 Effect of Lazy Rewriting

In Section 4.3.3 we explained why we apply lazy rewriting. We call the
opposite eager rewriting, i.e., we use rewrites to get every term in a form
Satallax regards as normal. With eager rewriting 30 problems from set theory
among the 261 in the SEU domain of the TPTP that Satallax can solve in
mode1 result in proof scripts with a size over one megabyte. However if
we avoid rewrites whenever possible, the proof script’s size is below 100
kilobytes. In Figure 5.5 we can see its effect on the five largest results, where
lazy rewriting even avoids rewriting completely.

Problem UNSAT core eager rewrite lazy rewrite
clauses steps rew. script steps rew. script

SEU808ˆ1 326 940 615 4578.5 325 0 62.4
SEU809ˆ1 327 941 615 4583.2 326 0 62.6
SEU812ˆ1 332 946 615 4600.0 331 0 63.2
SEU818ˆ1 339 1027 689 6663.5 338 0 64.9
SEU821ˆ1 344 1069 726 8240.4 343 0 65.3

Figure 5.5: The results for several SEU problems: Number of clauses in the
core, number of steps, rewrites and script size in kilobytes of the
refutation with eager and lazy rewrite.
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6 Conclusion

In this thesis, we have given a procedure to create a tableau refutation from
the result of Satallax. We can extract a finite tableau calculus from the
propositionally unsatisfiable set of clauses in the final state of Satallax. This
finite calculus has to be extended by analytic cut and due to the pre-selected
existential witnesses variables cannot be freely introduced by rules other than
the ∃-rule. We have given a formal proof that we can refute the initial branch
in this restricted tableau. We further noticed that the proof still holds for
a minimal unsatisfiable core, which again drastically reduces our tableau
calculus.

Based on these results we implemented our three-phased method as a
post-processing step of Satallax. We first search for a simple refutation in
the restricted tableau determined by the main search of Satallax. Then we
complete the refutation by taking care of normalizations, while we carefully
avoid explicit rewriting to prevent blowing up the size of the proof. In the
last phase we output the refutation as a Coq proof script, where we have
prepared lemmas and tactic macros to encode the refutation steps.

6.1 Future Work

Although the implementation successfully creates a Coq proof script for many
cases, there are still cases we cannot handle yet or where we could improve
the algorithm. However, we are certainly not short of ideas.

6.1.1 Dynamic Computation of UNSAT-Cores

In the current implementation we use Picomus at the beginning to reduce
the clauses in the final state of Satallax to an unsatisfiable core. However,
this set is only a core at this point in the search. After the first branching we
can already not tell which clauses are necessary on either branch. Therefore
we could continue to call Picomus during the search to keep the set of clauses
minimal.
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In the best case this might equally split the remaining clauses among the
branches. We could even use this as a heuristic by choosing the next step
that comes closest to this ideal. The main drawback though would be the
cost of calling Picomus. An acceptable compromise could be to call it only
at nodes close to the root or while the number of clauses is above a certain
threshold.

6.1.2 Learning

In Section 4.2.3 about tracking dependencies we already noted the similarity
between conditions and learnt clauses. While it is probably not possible
to prevent repeated subrefutations, we could at least avoid wasting time
on creating them twice or more. If we learn a refutation’s condition and
encounter later a branch that contains the condition, we will be able to just
copy the refutation we already found. Furthermore, we can avoid printing
and checking it more than once in the proof script if we include it as a lemma
into the script and later refer to the lemma when used in the refutation. This
would require building a suitable data structure that allows to look up quickly
whether an element is a subset of the current branch while keeping the space
requirements moderate.

6.1.3 Pattern Clauses

An important part of Satallax are pattern clauses, which contribute to about
30% of the solutions Satallax finds [10]. Unfortunately, our algorithm does
not include them at this point.

6.1.4 Alternative Approach

We already justified why our implementation does not follow the algorithm
the proof in Section 3.3 describes. However, it can be an alternative for
problems that are too large for our algorithm.

In a first phase we have to remove ∃-clauses from the clause set by satisfying
them with cuts, until on all branches no variable is blocked anymore. Then we
call a SAT solver on each of them, which is able to give short unsatisfiability
proofs like resolution graph [15] or conflict clause proofs [16]. The returned
proofs can be translated into refutations in a straightforward way.

For example, let us assume we get a resolution graph, i.e., every learnt
clause is assigned a node with the clauses it is inferred from as parents.
The initial clauses are source-nodes and the empty clause is assigned to a
sink-node.
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-1

-2 -1t2

2t-3 -1t3

1

∀xy.r x y
¬r z z
TCut

∀xy.r x y
TCut

r z z
 

¬r z z
TCut

∀x.r z x
T∀
r z z
 

¬∀x.r z x
T∀

∀x.r z x
 

¬∀xy.r x y
 

Figure 6.1: Resolution graph translated into refutation, where 1 :=
b∀xy.r x yc, 2 := br z zc and 3 := b∀x.r z xc. C :=
{1, −2, −1t3, 2t−3} is propositionally unsatisfiable. The graph
is represented as a tree: The root is the sink with the empty
clause, while the leafs are the source nodes. The parent/children
relation of graph and tree are inverted.

We recursively construct the refutation beginning with the initial branch
assigned to the empty clause. For each open branch we look at the parents of
the assigned clause to identify the atom both have the opposite literal of and
then cut on the corresponding formula. We assign the resulting branches to
the parent with the opposite literal cut has added. In the end every branch
is now either closed as it conflicts with an assumption or can be closed using
the step encoded by the assigned clause. We give an example in Figure 6.1.

The advantage of this approach is that we do not have to search for the
refutation except for the beginning, but can rely on established software in-
stead. However, we suspect that any problem where this would outperform
our implementation might be too large for Coq to check anyway. Further-
more we would have to output the formula for each cut in the proof script.

6.1.5 Satisfiability proof

The topic of this thesis has been about giving a proof for the case that the
given list of axioms is refutable. However, sometimes Satallax arrives at
the solution that it is not. This is the case when Satallax cannot add any
more clauses to its state although the set of clauses is still propositionally
satisfiable.
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To verify this result differs largely with what we are doing, but is not
any more complicated. As the set of clauses is propositionally satisfiable,
MiniSat returns a propositional assignment Φ as its answer. If we turn Φ
into a set A of higher-order formulae as we did before with our branches, A
will fulfil the evidence (Hintikka) conditions [6, 17]. By the Model Existence
Theorem there is a Henkin model satisfying A [10], which proves that our
set of axioms is satisfiable.

We can give A as our proof and write a simple verifier checking the evidence
(Hintikka) conditions on A.
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